Photovoltaic Performance in the Dye-Sensitized TiO, Electrode using HPC Binder

<u>박경희*</u>, 황경준¹, 조성용², 한정희, 구할본 전남대학교 전기공학과; ¹서남대학교 환경화학공학과; ²전남대학교 환경공학과 (see0936@chonnam.ac.kr*)

Titanium oxide based dye-sensitized solar cells (DSSC) was fabricated by the use of hydropropylcellulose (HPC) as binder. The formation mechanism of HPC-modified ${\rm TiO_2}$ films was studied by FTIR analysis of the sols. It was revealed that HPC anchors on the surface of ${\rm TiO_2}$ colloid. The action between the polymers decides the distribution of ${\rm TiO_2}$ colloid in the sol. Transmission electrical microscopy (TEM) and scanning electrical microscopy (SEM) showed that the particle size of ${\rm TiO_2}$ decreased and the microstructure of the film became loose with the addition of HPC, reaching an optimum when the concentration of HPC was 5×10^{-3} g/g sol. Further addition of HPC made the microstructure became dense. With the increase of the concentration of HPC binder to treat ${\rm TiO_2}$ electrode the fill factor (FF) of DSSC increase, the short-circuit current (Isc) decreases, the open-circuit voltage (Voc) increase. Using HPC binder is advantageous for the adsorption to molecules and enhancement of the photoelectric performance of ${\rm TiO_2}$ electrode.