Low-temperature oxidation of CO over CoO_x/TiO_2 catalysts for HCCI and fuel cell vehicle applications

김기환, <u>김문현</u>*, 함성원¹ 대구대학교 환경공학과; ¹경일대학교 디스플레이화학공학과 (moonkim@daegu.ac.kr*)

A TiO₂-supported CoO_x catalyst with 5 wt% Co has been used for CO oxidation at low temperatures, such as 50 and 100°C, under a net oxidizing condition, and samples of the catalyst have been characterized using TPD, XPS and XRD measurements. The catalyst after calcination at 450°C gave highest activity for this CO oxidation, and XPS measurements yielded that a 780.2–eV Co $2p_{3/2}$ main peak appeared with this sample and this binding energy was similar to that measured with pure Co₃O₄. After calcination at 570°C, the catalyst, which had possessed practically no activity in the oxidation reaction, gave a Co $2p_{3/2}$ main structure peak at 781.3 eV which was very similar to those obtained for synthesized Co_nTiO_{n+2} compounds, and this catalyst sample had relatively negligible CO chemisorption as observed by TPD spectra. XRD peaks indicating only the formation of Co₃O₄ particles on titania surface were developed in the catalyst samples after calcination at temperatures \geq 350°C. Based on these characterization results, five types of Co species could be modeled to exist with the catalyst calcined at different temperatures.