Performance of dye-sensitized solar cell based on double-layered TiO₂ films/TiO₂ fibers

의윤아, 김선일*, 이재욱 조선대학교 (sibkim@chosun.ac.kr*)

Application of electrospun ${\rm TiO_2}$ nanofibers was reported for an electrode for dye-sensitized solar cells(DSSC). This paper reports on structrural characterization and morphology of titanium dioxide (${\rm TiO_2}$) nanofibers prepared by electrospinning using a solution that contained poly(vinyl acetate) (PVAc) and titanium(IV) isopropoxide (${\rm Tip}$) and acetic acid as a catalyst for sol-gel reaction in dimethyl formamide (DMF) above ${\rm TiO_2}$ thin film was fabricated by coating a precursor paste onto the fluorine-doped ${\rm SnO_2}$ conducting glass plates(FTO) by using a squeeze printing technique and followed by heating it at 723.15 K for 30 min. ${\rm TiO_2}$ nanofibers with diameters of 80–100 nm were successfully obtained from calcinations of the aselectrospun ${\rm TiO_2/PVAc}$ composite nanofibers at above 400°C in air for 5hr. The aselectrospun and calcined ${\rm TiO_2/PVAc}$ composite nanofibers were characterized by SEM,XRD,FT-IR,THA,BET. The results indicated a significant effect of calcinations temperature on the crystalline phase in the form of either anatase or mixed anatase-rutile and the morphology of the nanofibers.