Designed Nanostructured Materials for Energy Conversion and Storage Devices

Jinwoo Lee, Ph. D.

Department of Chemical Engineering/School of Env. Sci. & Eng POSTECH

Outline

- Motivation
- Soft-Hard Integrated Assembly
- Fuel Cells
- Solar Cell
- Lithium ion battery

Motivation

Energy and Environmental Concerns

Better Energy Conversion & Storage Devices

Lewis, Nathari, Forum, Scientific Challenges in Sustainable Energy Technolog Palo Ato Research Center, Paio Ato, California, 10 Feb. 2005. Synthesis of Mesoporous Silica Materials using Surfactant-Self-Assembly as Template Soft-template method

Kresge et al. *Nature* **1992**, 359, 710.

Toward Ordered Mesoporous Crystalline Transition Metal Oxides

•Non-siliceous mesoporous metal oxides (TiO₂, Nb₂O₅....) :Important for electrode materials and catalysis

•Many Research Groups have pursued after discovery of MCM-41 :Limited Success (Through Soft-Template Method)

•Structure collapse occurs during the crystallization of the walls and removal of soft-template

•Very recently, hard template was employed to make crystalline mesoporous metal oxides

Soft-template method

Hard template method

Tedious synthetic step

Bruce et al JACS 2006

PI-b-PEO synthesis

3797

1h 30 min

J. Lee et al 2007 Nature Materials revised version

J. Lee et al 2007 Nature Materials revised version

TEM images of Fully Crystalline Mesoporous Transition Metal Oxides

3799

Thermogravimetric Analysis

The Mesoporous Nb_2O_5 via conventional way has nearly amorphous walls

Nitrogen Sorption Experiment

The normally heat-treated sample under air at 700 °C : BET surface area ~0.2 m²/g

The mesopores was preserved even after heat-treatment at 1000 °C!!!

Fuel Cells

Issues with Current Electrode Materials

Carbon: Corrosion

Complicated synthetic method

♦ PtRu Alloy: Poisoning & low mass activity

Solution

Intermetallic Nanoparticles on Mesoporous Metal Oxides

The long Pt-Pt distance in intermetallic compounds precludes the adsorption of CO

J. Lee et al 2007, to be submitted

Small-Angle X-ray scattering of As-syn material

Short-range ordered hexagonal

Nanoparticles dispersed in Uniform Large Mesoporous TiO₂

Electrochemical testing of novel materials

3805

A high mass activity Much lower onset potential

CO stripping oxidation

Photovoltaics

Dye-sensitized solar cells

Current performance: n=11% O'Regan, B. & Grätzel, M. - *Nature 353*, 737-740 (**1991**)

Solid state dye-sensitized solar cell

Collaboration with Cavendish Laboratory, University of Cambridge, UK

Cornell University USA Prof. Ulrich Wiesner

Prof. Ulrich Steiner

OE Group-Cambridge Prof. Sir Richard Friend

Financial Support PolyFilm EU-RTN

Nanoscience Centre

Problem with Previous TiO₂

◆ Heat-treatment at low temperature: amorphous region still present

350 °C~450 °C for 30 minutes

Soft-template

Nano Lett 2005, 5, 1791

Recap Mesoporous TiO₂

J. Lee et al 2007 Nature Materials revised

Cross-section of mesoporous TiO₂

Dye sensitized solar-cell

✤ Light absorption in dye, electron transfer to TiO₂, hole transfer to Spiro-MeOTAD.

3810

Device results

Performance parameters

J-V data as a function of temperature annealing

	600°C	550°C	500°C	450°C
J _{sc}	2.0	2.54	1.09	0.71
(mAcm ²)				
$V_{oc}(V)$	0.81	0.76	0.70	0.65
η (%)	0.56	1.17	0.35	0.25
FF	0.35	0.61	0.46	0.54

As the temperature increased, the amorphous regions were converted to crystalline materials

Composition Variations

Results

Another approach: Patent application being written Performance under simulated sun light

Facile synthesis of well-organized crystalline TiO₂/carbon composites for use as anode in Lithium ion batteries

9.4x10⁻³ S/cm

154 m²/g, 0.3 cm³/g

Wall is composed of TiO_2 nanoparticles

Added small amount of conducting agent

Background

• Transition metal oxide/carbon composite materials have been synthesized to use as electrode materials

•Typical method to make carbon/transition metal oxide composite ⇒Loading of transition metal oxide in carbon materials

•To make homogeneously mixed nanocomposite of carbon and metal oxide, ordered mesoporous carbon was used

TEM of microphase separated As-syn composite

The dark part is titanium oxide part

Carbon content ~10 wt% from TGA under air

After removal of carbon

Pore size distribution

	BET surface area (m ² /g)
Carbon/TiO2	52
TiO2	115

PEO-b-PAN

:a structure-directing agent for *fully crystalline* mesoporous transition metal oxides

Broad Pattern

Magnetic Properties

• SQUID (Superconducting quantum interference device) data

10 wt% Magnetite NP (4nm)/IS53-143, annealed at 180°C for 48 hrs

Blocking temperature=13 K

 $\tau_m = \tau_o \exp(\frac{KV}{k_B T_B})$

Magnetite/PSPI Nanofibers exhibit superparamagnetic properties.

Hierarchical carbon nanofiber

Hollow graphite is known to be good electrode material

3821

Raman Spectroscopy

More Graphitic

Magnetically Separable Electrode Materials

Summary

 \bullet Highly crystalline mesoporous TiO₂ materials were successfully used as anode materials for high efficiency solid-state photovoltaics

◆ Intermetallic nanoparticles on mesoporous metal oxide were highly active fuel cell catalysts

♦ High efficiency solar cell electrode was fabircated using soft-hard integrated self-assembly