Polydiacetylene Chemical Sensors Using Fluorescence Resonance Energy Transfer

김나리¹, 홍주희¹, 이길선^{1,2}, 안동준^{1,2,*}
¹고려대학교 화공생명공학과; ²고려대학교 나노과학연구소
(ahn@korea.ac.kr*)

Polydiacetylene (PDA) has been widely investigated as a sensor due to unique colorimetric and fluorescent changes by external stimuli, that is, from blue to red and from non-fluorescent to red-fluorescent. However, the quantum yield of PDA alone is very low. In order to overcome this disadvantage, we employed fluorescence resonance energy transfer (FRET). In this study, we prepared a mixed vesicle by inserting BODIPY fluorescent dye (BO558) into 10,12-Pentacosadiynoic acid (PCDA) vesicles. We report that mixed vesicle sensors can selectively detect α -cyclodextrin (α -CD) over γ -cyclodextrin (γ -CD). The fluorescence intensity of polymerized PCDA/BO558 vesicles was significantly decreased. The intensity was increased upon reaction with α -CD, while it was not almost changed upon reaction with γ -CD. Such fluorescent increases are believed to result from reduced energy transfer due to a conformational change of the conjugated backbone of PCDA by the inclusion complexation of α -CD. When compared to colorimetric response of the PCDA vesicles, the fluorescence changes of the PCDA/BO558 vesicles using FRET were more valuable in view of detection performance.