Effect of e-beam irradiation on the properties of PEGME-TiO₂ electrolytes and photovoltaic performance of dye sensitized solar cells

모드샤흐르아크탈, 박정근, 이현철, Qazi Inamur Rahman, 양오봉^{1,*} 전북대학교 반도체화학공학부 환경에너지 연구실; ¹전북대학교 공과대학 화학공학부 (obyang@chonbuk.ac.kr*)

Recently, polyether and polyester based electrolytes have given much attraction due to their high thermal stability and stable ionic conductivity at ambient temperature. In this study, we prepared a novel composite electrolytes with polyethylene glycol methyl ether (PEGME) and titania (${\rm TiO_2}$) and introduce electron beam (e-beam) radiation for the improvement of the thermal, mechanical and ionic conductivity properties of PEGME- ${\rm TiO_2}$ electrolytes. A DSSCs fabricated with modified PEGME- ${\rm TiO_2}$ electrolytes (200kGy) showed a high overall conversion efficiency of 3.35% with VOC of 0.588 volt and ISC of 9.68 mA/cm² at $100 {\rm mW/cm^2}$ illumination. As can be seen, the physicochemical properties of PEGME- ${\rm TiO_2}$ electrolytes was enhanced, which improved (about 13%) the photovoltaic performance of DSSCs in compare with the non-irradiated composite electrolytes based DSSCs.