The sulfidation properties of Zn-Ti-based desulfurization sorbent in various hot coal gas composition

<u>박정제</u>, 김재창*, 정석용, 이수재, 이태진¹ 경북대학교; ¹영남대학교 (kichang@knu.ac.kr*)

The sulfur removing capacities of Zn–Ti–based sorbents prepared by co–precipitation were tested in various hot coal gas compositions using a fixed–bed reactor at 1 atm and middle–temperature condition (sulfidation : 480° C, regeneration : 580° C). The sulfur removing capacities of the sorbents were measured by a thermal conductivity detector (TCD) and flame photometric detector (FPD). The hot coal gas composition usually consisted of five gases which were H_2S , CO_2 , CO, H_2 , N_2 . The concentrations of the H_2S and CO_2 gases were fixed to 1.5% and 2%, and those of H_2 and CO gases were changed from 0% to 55%, respectively. The sulfur removing capacities of the sorbents were not affected with the increase of the H_2 gas and decreased with the increase of the CO gas. In addition, in the case of the condition of the CO 55% without H_2 gas, the SO_2 gas was produced in the initial reaction when H_2S gas removed. This phenomenon was not indicated in the condition with H_2 gas above E00. The role of gases and the sulfur removing capacity of the sorbent in various gas conditions were discussed.