Characteristic Velocities of Mixture of Sand and Sawdust in a Fluidized Bed

박동규, 김상돈* KAIST (kimsd@kaist.ac.kr*)

Biomass is known as an important renewable alternative energy resource. Sawdust was chosen as a biomass which is suitable for domestic power plants application. By itself, sawdust dose not fluidize well and it exhibits channeling with the Geldart C powder behavior. Therefore, sand particles were added as an inert component to improve fluidization quality of sawdust. The characteristic velocities of the initial fluidization velocity ($U_{\rm fi}$), the minimum fluidization velocity ($U_{\rm mf}$), and the complete fluidization velocity ($U_{\rm fc}$) of the mixture of sand and sawdust were determined in a fluidized bed. $U_{\rm mf}$ of the mixture increases exponentially up to 14 cm/s (2.5Umf) with increasing weight fraction of sawdust. The values of $U_{\rm fi}$ and $U_{\rm fc}$ exhibit similar trends with the variation of $U_{\rm mf}$. The existing correlations to predict $U_{\rm mf}$ of the binary mixtures can not be used successfully due to the peculiar fluidizing behavior of sawdust. To predict $U_{\rm mf}$ of sawdust, a new correlation as a function of Reynolds and Archimedes numbers was developed. The segregation between the two components starts at the gas velocity between $U_{\rm fi}$ and $U_{\rm fc}$. Beyond $U_{\rm fc}$ (17 cm/s), the well-mixed state of the mixture of sawdust and sand can be attained in the whole bed.