Fabrication of TiO₂ nanotube by anodization

<u>이고운</u>, 조용진, 주오심, 정광덕* 한국과학기술연구원 (jkdcat@kist.re.kr*)

 ${
m TiO_2}$ nanotube preparation method has been established for the application for a bio-sensor, a solar cell and a PEC (photoelectrochemical cell), recently. On the other hand, the understandings for the mechanism of the ${
m TiO_2}$ nanotube growth and the properties of one-dimensional ${
m TiO_2}$ array are not known. Anatase ${
m TiO_2}$ nanotubes formed by anodic oxidation on a pure titanium substrate which controllable good uniformity at room temperature in [F-] containing electrolyte. ${
m NH_4F}$ or HF was used as a fluoride ion source and ethylene glycol and ${
m H_2O}$ was used as solvent.

A mechanism of the formation of the ${\rm TiO_2}$ nanotubes was studied based on the observation of the surface morphology (top-view and cross-sectional view) using FE-SEM, depth profiles by Auger analysis and the analysis of the current density-time curves between different concentration of electrolyte containing (0.2wt%~0.5wt%). The crystal structures of the ${\rm TiO_2}$ nanotubes were confirmed using X-ray diffraction (XRD). The prepared ${\rm TiO_2}$ nanotubes were annealed at temperature ranges from 250°C to 450°C in dry oxygen ambient for an hour and the structural changes were monitored. From the depth profiles, the mechanism of ${\rm TiO_2}$ nanotube growth is discussed.