Electrochemical properties of $Sm_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ as cathode material for Solid Oxide Fuel Cells

<u>삼시</u>, 심경보, 양오봉^{1,*} 전북대학교; ¹전북대학교 화학공학부 (obyang@chonbuk.ac.kr*)

Cathode materials consisting of $Sm_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ were prepared by the glycine nitrate process for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope coupled with electron dispersive X-ray analysis (SEM-EDX), electrical conductivity and electrochemical properties. The samples had an orthorhombic perovskite structure. The electrical conductivities were all higher than 500 S cm⁻¹. The highest conductivity, 984 S cm⁻¹, was found at 300°C. A symmetrical electrode of $Sm_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ powders was deposited on electrolytes of $Sm_{0.2}Ce_{0.8}O_2$ (SDC) ceramic pellets. The area specific resistance value for the SSCF cathode was as low as 0.1625 Ω cm² at 850°C.