Water Gas Shift Reaction over Cu-Mo/Ce_xZr_{1-x}O₂ Catalysts for Fuel Processor and Hydrogen Station Applications

<u>박문주</u>^{1,2}, 강정식^{1,2}, 문동주^{1,*}, 이병권¹, 김명준³, 최재석³ ¹한국과학기술연구원; ²고려대학교; ³SK (djmoon@kist.re.kr*)

mixed oxides (CexZr1-xO2 (x = 0.3-0.9)) were prepared and used as supports of Cu-Mo bimetallic catalysts. The catalysts prepared by co-precipitation and impregnation methods were characterized by N2 physisorption, CO chemisorption, TPR, XRD and TEM techniques. Water gas shift reaction (WGS) over Cu-Mo/CexZr1-xO2 catalysts was investigated to develop an alternative to commercial Cu-ZnO/Al2O3(LTS) catalyst. It was found that 12wt% Cu-2wt%Mo/Ce0.5Zr0.5O2 catalyst showed higher activity and thermal stability than the commercial LTS catalyst for WGS reaction during the thermal cycling reaction under the tested conditions.