Selective Hydrogenation of Levulinic Acid to y-Valerolactone over Carbon-supported Noble metal Catalysts

Pravin Upare^{1,2}, 이종민¹, 황동원¹, Shiva B. Halligudi¹, 황영규^{1,2}, 장종산^{1,2,*} ¹Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology; ²School of Science, University of Science and Technology (UST) (jschang@krict.re.kr*)

Selective hydrogenation of biomass derived levulinic acid (LA) to γ – valerolactone (GVL) has been efficiently catalyzed by Ru, Pt and Pd noble metal supported on carbon under vapor phase in a continuous down flow fixed-bed reactor system. Among the catalysts, 5 wt. % Ru/C gave GVL with 100% selectivity at 100% LA conversion up to 240 h (10 days) without loss in its activity. The higher catalytic activity and product selectivity of 5 wt. % Ru/C catalyst has been attributed to the higher dispersion of metallic Ru over carbon in nano-sizes compared to Pt and Pd catalysts.