Photocatalytic partial oxidation of diesel like hydrocarbon for DeNOx application

김재율, 이재성* POSTECH (jlee@postech.ac.kr*)

We have prepared photocatalytic partial oxidation of dodecane system to produce oxygenated hydrocarbon and $\rm H_2$ for reducing NOx so that we can decrease NOx emission from diesel fuel vehicle. There are many photocatalytic partial oxidation results of short chain and aromatic hydrocarbon. And a few of reports exist regarding long chain alkane such as dodecane (tetrahedron 58 (2002) 2943–2950, Marine Chemisrty 58 (1997) 361–372). but these came from air–equilibrated aqueous $\rm TiO_2$ suspention system different from vehicle exhaust gas line environment in which there is lack of $\rm H_2O$ compared with aqueous suspension batch system. In this circumstances, we conduct the experiments which resulted in $\rm CO_2$ formation and little amount of dodecane was partially oxidized to aldehydes whose selectivity seemed to be the highest among Oxygenated hydrocarbons(OHC). Scarce amounts of $\rm H_2$ also detected. To increase OHC selectivities, we will decrease oxygen composition. After finding optimized reaction condition, photocatalyst would be changed from commercial anatase phase $\rm TiO_2$ to surface modifided $\rm TiO_2$ or other materials such as $\rm MoO_3$, $\rm V_2O_5/SiO_2$.