Effect of HCl and SO₂ on mercury oxidation over CuCl₂-loaded SCR catalyst in SCR process

<u>홍현조</u>, 함성원*, 김문현¹, 이승민², 이정빈² 경일대학교; ¹대구대학교; ²전력연구원 (swham@kiu.ac.kr*)

This study was addressed to develop a catalyst for simultaneous removal of mercury and NO in SCR process. The activity of CuCl_2 -loaded V_2O_5 -WO $_3$ /TiO $_2$ catalyst for mercury oxidation was significantly increased with the increase of CuCl_2 loadings. In particular, compared to commercial V_2O_5 -WO $_3$ /TiO $_2$ SCR catalyst, the enhancement of activity of CuCl_2 -loaded catalyst for Hg^0 was more apparent under SCR condition than oxidation condition. However, the activity for Hg^0 oxidation was depressed by the addition SO_2 and dependent on the relative concentrations of HCl and SO_2 . To understand the effect of HCl and SO_2 on mercury oxidation, the catalysts obtained after various reaction conditions including HCl and SO_2 were characterized by a variety of analyses using ICP, XRF, XPS and XRD.