1780

Bernard-Marangoni instability in the transparent conductive polymeric films containing MWCNTs

<u>전상일</u>, 이헌상* 동아대학교 (heonlee@dau.ac.kr*)

We investigated the effect of Bernard-Marangoni(B–M) instability on the electrical conductivity of polymer/MWCNTs composite films. B–M instability occurs when the thermal Bernard-Marangoni number is higher than a critical number. We studied on three types of conditions; unstable, onset, and stable. The electrical conductivity of composite films are strongly affected by B–M instability. The expression of percolation scaling law is modified where the Bernard-Marangoni cell is taken into account. The modified percolation scaling law could be written as $\log(R_{s0}/R_s)=\log(c\beta-c^0)^t$. The value of β was found to be 1.0, 1.2, and 0.8 at stable, onset, and unstable condition, respectively. The exponent t was found to be 2.0, indicating the MWCNT/polymer composite films exhibit three-dimensional behavior in percolation scaling law despite that the B–M instability occurs. The percolation threshold for PC/MWCNT composite films at stable, onset, and unstable condition is 3.30×10^{-3} , 2.75×10^{-3} , and 5.15×10^{-3} vol.%, respectively.