Catalytic performance on CuO-Cr₂O₃-Ga₂O₃ mixed oxides for water gas shift reaction: effects of Ga/Cr molar ratio

<u>김아롱</u>, 배종욱*, 박명준¹, 이발상¹ 성균관대학교; ¹아주대학교 (finejw@skku.edu*)

Water gas shift (WGS) reaction was carried out on the co-precipitated CuO-Cr2O3-Ga2O3 mixed oxides by varying the molar ratio of Ga/Cr using metal nitrate precursors and Na2CO3 precipitant. The catalytic was prepared at the fixed molar ratio of Cu/(Cr+Ga) at 1.0/0.1 with the different Ga/Cr ratio from 0 to 4. The catalytic performance on the reduced CuO-Cr2O3-Ga2O3 mixed oxides is found to be in the shape of volcano curve with respect to the variation of Ga/Cr molar ratio. The highest catalytic activity was observed at the molar ratio of Ga/Cr = 1.0 in the temperature ranges of 160 - 280 oC. The observed catalytic activities are strongly related with the metallic surface area and crystallite size of Cu species which are confirmed by XRD and N2O titration method.