Hydrogen Production from Steam Reforming of Glycerol over Ni based Hydrotalcite Catalysts

<u>허</u>은^{1,2}, 조수현^{1,3}, 이승환¹, 김상우¹, 하헌필⁴, 안병성¹, 문동주^{1,2,*}

¹Clean Energy Center, KIST; ²Clean Energy & Chemical Engineering, UST; ³Dept. of Chemical & Biological Eng., Korea Univ.; ⁴Functional Materials Center, KIST (djmoon@kist.re.kr*)

Steam reforming (SR) of over Ni based catalysts prepared by solid phase crystallization (spc) method under different conditions were investigated. The SR of glycerol was carried out in a fixed bed reactor with a temperature range of $600\sim800^{\circ}$ C, an atmospheric pressure, a space velocity (GHSV) of 5,000~15,000 h-1 and feed molar ratio of H₂O/C=1.3~3.0. The catalysts before and after the Glycerol SR were characterized by N₂ physisorption, CO chemisorption, TPR, XRD, SEM, and TEM techniques. It was found that the Ni based hydrotalcite catalysts showed higher catalytic activity and stability than Ni/y-Al₂O₃ catalysts. There is no formation of NiC during the reaction. However, it was slowly deactivated due to the carbon formation. The results suggested that the spc-Ni/MgAl catalysts was expected to improve catalytic stability because of the inhibition of coke formation during the SR of glycerol.