Direct synthesis of H_2O_2 from H_2 and O_2 over palladium nanocatalysts immobilized on functionalized resin

<u>김종민</u>, 정영민¹, 강성민, 최창형, 김보열, 권용탁¹, 김태진¹, 오승훈¹, 이창수* 충남대학교; ¹SK이노베이션 (rhadum@cnu.ac.kr*)

Hydrogen peroxide, widely used in almost all industrial areas, is commercially produced by the anthraquinone oxidation (AO) process. However, this process requires significant energy input and generates waste, which has a negative effect on its sustainability and production costs. An alternative method is direct synthesis of H_2O_2 (DSHP) from H_2 and O_2 . The DSHP process is conceptually the most ideal and straight forward reaction for producing H_2O_2 in industry. However, preparations of precisely tailored catalysts are still under progress for large scale production of H_2O_2 . Here, we present highly efficient and industrially relevant catalyst for the direct synthesis of H_2O_2 from H_2 and O_2 prepared by the immobilization of Pd nanocatalysts onto a functionalized resin. The continuous production of $8.9 \text{ wt}\% H_2O_2$ and high productivity (180 g H_2O_2 g Pd⁻¹ h⁻¹) is achieved under intrinsically safe and less-corrosive conditions without any loss of activity. We expect this approach is a substantial improvement of nanocatalysts for direct synthesis of H_2O_2 from H_2 and O_2