Electrochemical Characteristics of Cylindrical Hybrid Capacitor using Various Structure of the Cathode Active Materials

<u>우대중*</u>, 한상진, 이동열, 양오봉¹ 비나텍 주식회사; ¹전북대학교 화학공학과 (djwoo@vina.co.kr*)

Electric double layer capacitors base on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is smaller as compared with that of batteries and limits the wide spread use of the capacitors. To obtain the new device that shows large energy density, high power density and stable performance, a new hybrid capacitor is developed. This new capacitor comprises of an organic electrolyte containing Li salt, an activated carbon cathode and a carbonaceous anode that can intercalate and de-intercalate Li ion. In particular, hybrid capacitor using LiMn_2O_4 as the cathode electrode has been commercially. But Mn^{2+} ion eluted from LiMn_2O_4 at high temperature due to Mn^{2+} ion dissolution reaction and deterioration of capacity. In this study we fabricated cylindrical hybrid capacitor using various structure of metal oxide such as olivine, spinel layer structure as cathode and their analyzed electrochemical behavior.