Syngas production by the SCR of methane over Ca modified hydrotalcite catalyst

<u>이윤주</u>, 양은혁, 이진희, 김현진¹, 이승환², 김방희², 문동주* KIST; ¹대우조선해양(주); ²제이엔케이히터(주) (djmoon@kist.re.kr*)

The Steam CO_2 reforming(SCR) reaction of methane for the production of syngas was investigated over Ca modified Ni based catalysts. The Ca-Ni based catalysts were prepared by the solid phase crystallization and impregnation methods. The catalysts before and after the reaction were characterized by N_2 physisorption, CO chemisorption, TPR, XRD, SEM and TEM techniques. The H_2/CO ratio produced in the SCR of methane showed a strong dependence on the feed composition. The conversion of CH_4 was increased with increasing the concentration of steam and CO_2 in the feed. For Fischer-Tropsch synthesis reaction, the feed ratio of $\mathrm{CH}_4/\mathrm{H}_2\mathrm{O}/\mathrm{CO}_2$ for the production of $\mathrm{H}_2/\mathrm{CO}=2$ was estimated by the modeling of commercial simulation package, and identified in the fixed bed reactor system. It was found that the Ca modified Ni based hydrotalcite catalyst showd higher catalytic stability with the restriction of the carbon formation in the SCR of methane under the tested condition.