Dimethylether synthesis from syngas on the bifunctional Al_2O_3 -modified CuO-ZnO- Al_2O_3 /ferrierite catalysts

<u>이영준</u>, 배종욱* 성균관대학교 (finejw@skku.edu*)

Dimethylether (DME) have been largely attracted as ther important alternative energy sources by blending with liquefied petroleum gas (LPG) or by replacing petroleum-based diesel. In general, bifunctional catalysts, which are composed of $\text{CuO-ZnO-Al}_2\text{O}_3$ catalyst for gydrogenation of CO and solid acid zeolite catalyst for consecutive degydration of methanol, are intensively investigated for singe-step DME sinthesis from gyngas. In the present study, the strong acidic sites on the ferrierite zeolite, which are responsible for the byproduct formetion, are selectively modified using Al_2O_3 with the content from 0 to 30wt% by precipitation method. The optimum compositions for a high CO conversion and a low byproduct formation such as CH_4 were observed on 20wt% Al_2O_3 -modified $\text{CuO-ZnO-Al}_2\text{O}_3$ /ferrierite catalyst with a high catalytic stability. The bifunctional catalysts were further characterized to elucidate the reducibility, acidic site density and particle size variation of copper species befere and after reaction using TPR, NH_3 -TPD,XRD and N_2O titration analyses.