Cost-efficient, Rubbery Amphiphilic Comb-like Copolymers for Mesoporous TiO₂ Films in Solidstate Dye-sensitized Solar Cells

<u>이창수</u>, 김동준, 지원석, Rajkumar Patel, 김종학* 연세대학교 (jonghak@yonsei.ac.kr*)

One-step free radical polymerization was employed for the synthesis of cost-efficient and rubbery amphiphilic copolymers with hydrophilic poly(oxyethylene methacrylate) (POEM) and hydrophobic poly(lauryl methacrylate) (PLMA). The successful synthesis of PLMA-POEM was identified with Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance (H-NMR) and gel permeation spectroscopy (GPC). Anatase mesoporous ${\rm TiO_2}$ films were formed by using PLMA-POEM copolymers as structure-directing agent. Morphology of ${\rm TiO_2}$ films were controlled by adjusting precursor and molecular weight of polymer. Scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GI-SAXS) and ${\rm N_2}$ adsorption desorption measurement were employed for analysis of worm-like structure. For 2 ${\rm \mu m}$ -thick ${\rm TiO_2}$ film, the highest efficiency of 4.2% was obtained, and for 7 ${\rm \mu m}$ thick with layer-by-layer method, it was improved to 5.0%. It was much larger than commercial ${\rm TiO_2}$ paste (3.9%).