BaCrO_x를 코팅한 BSCF 분리막의 산소투과특성

<u>박정훈</u>*, 이홍주 동국대학교 화공생물공학과 (pjhoon@dongguk.edu*)

 CO_2 감축이 전 세계적으로 중요한 문제로 대두되고 있는 가운데 CO_2 농도를 줄이기 위해 CO_2 를 포집 및 처리하는 기술인 CCS 기술이 활발히 연구되고 있다. 이산화탄소를 회수하는 기술은 CCS 기술 전체 비용에 70%를 차지한다. 그 중에서 순산소 연소 포집기술은 공기 중에서 산소만을 분리하여 연소기에 공급하여 고농도의 CO_2 를 배출하여 회수하여 포집하는 방법이다. 이 때, $\mathrm{Ba}_{0.5}\mathrm{Sr}_{0.5}\mathrm{Co}_{0.8}\mathrm{Fe}_{0.2}\mathrm{O}_{3+6}(\mathrm{BSCF})$ 분리막은 높은 산소 투과율을 보이는 것으로 알려져 순산소 연소를 위한 산소 분리 방법으로서 많이 연구되고 있다. 하지만 BSCF 분리막은 실제 공정에서 장기간 사용 시에 스테인리스 재질의 관이나 홀더 등에 존재하는 Cr 에 의해서 피독 현상이 일어나 산소 투과율이 현저하게 감소한다. 본 연구에서는 Cr 피독 현상을 방지하기 위해 BSCF 분리막에 BaCrO_x 를 답코팅 방식으로 코팅하고, 코팅된 분리막의 산소투과특성을 실험해보았다. 코팅된 분리막은 코팅되지 않은 BSCF 분리막의 산소투과율과 비교했을 때 아주 높은 수치임을 알 수 있었다.