Hierarchically mesoporous anatase titanium oxide (TiO2) microspheres are synthesized using a green supercritical methanol

<u>유도현</u>¹, Agung Nugroho^{2,3}, 이문영⁴, 김재훈^{1,*}
¹성균관대학교; ²한국과학기술연구원; ³UST;
⁴성균관대학교 기계공학과
(iaehoonkim@skku.edu*)

Hierarchically mesoporous anatase titanium oxide (TiO2) microspheres are synthesized using a green supercritical methanol route at a very short reaction time of 15 min without using templates or surfactants. Primary nano-sized particles with diameters of 20-55 nm with organic coverage on the surface are loosely aggregated and form secondary micron-sized particles with diameters of 1.0-2.5 m, endowing the a mesoporous structure with pore diameters of 2-50 nm. When the as-synthesized microspheres were calcined under a Ar/5% H2 condition, carbonization of the organic groups form ultrathin and uniform carbon layer on the nano-sized primary particles with thickness of 0.5-1 nm and reduces some of surface Ti+4 into Ti+3. Both the hierarchically mesoporous structure and the conductive layer coating have positive effects to increase Li ion storage capacity.