Effects of calcination temperatures of W-Mo co-doped VO₂ particles on thermochromic properties

<u>신지혜</u>^{1,2}, 조초원^{1,2}, 유중환^{1,*} ¹한국세라믹기술원; ²고려대학교 (jwyoo@kicet.re.kr*)

Vanadium dioxide(VO₂) has a reversible semiconductor-to-metal(S-M) transition temperature(T_c) of approximately 68 °C with an abrupt electrical and optical properties change. It is possible for a few dopants to control the Tc from 68 °C to low temperature. In this study, W and Mo co-doped VO₂ nanopowders were synthesized via hydrolysis of vanadyl sulfate mingled with a small amount of sodium tungstate and sodium molybdate and subsequent calcination process. The W-Mo co-doped VO₂ particles were calcined at different temperatures(775-875°C) for 3h under N₂ atmosphere to study influence of VO₂ crystallnity and T_c, respectively. From the XRD and DSC results, the crystallinity is strong at 850 °C and its Tc change about 36 °C (from 68 °C to 32 °C). XPS spectra revealed that Mo⁶⁺ and W⁶⁺ incorporated into the VO₂ lattice and formed solid-solution phases with VO₂. For further characterization, TEM and FE-SEM were done.