Selective reduction of NOx by NH₃ with V₂O₅-WO₃/TiO₂-based Fe-MFI catalysts

<u>이효상</u>, 김문현* 대구대학교 환경공학과 (moonkim@daegu.ac.kr*)

 V_2O_5 -WO $_3$ /TiO $_2$ -based Fe-MFI catalysts have been prepared using samples of a commercial 1.68% V_2O_5 -7.6% WO $_3$ /TiO $_2$ and a Fe-ZSM-5 with a 96-% exchange level and used for the selective catalytic reduction (SCR) of NOx by NH $_3$. The presence of the Fe-MFI in the commercial SCR sample plays a minor role in lowering deNOxing activity at 300-400°C, by 5-10%, compared to the bare V_2O_5 catalyst, and the extent of the decrease in NOx conversion depended visibly on amounts of the Fe-zeolite used. Regardless, this way of combining such a V_2O_5 /TiO $_2$ -based catalyst with Fe-zeolites may offer us a good alternative to suppress the formation of V_2O_5 in NH $_3$ -SCR reaction, because the commercial SCR catalyst with the Fe-ZSM-5 gave very low V_2O_5 production (< 2 ppm) even at 480°C at which ca. 50 ppm V_2O_5 was measured with the unpromoted V_2O_5 catalyst. NH $_3$ and NO TPD measurements with the samples could well support such activity data.