CO₂ reforming of CH₄ to syngas by DBD plasmas with zeolite catalyst particles

Nguyen Hoang Hai, , , *

Dry reforming of methane that converts two green house gases (CH_4 and CO_2) to syngas (mixture of CO and H_2) has gained a deep research interest lately. The ratio of H_2/CO product gases by this process is close to 1/1, which is appropriate for the production of Fischer-Tropsch liquid hydrocarbons and oxygenates. Several technologies were proposed for CO_2 reforming of CH_4 , such as catalytic conversion, plasma conversion and the combination of catalyst and plasmas.

In the catalytic reforming of CO_2 and CH_4 , the carbon deposition leading to deactivation of catalysts is a big problem. The CO_2 reforming of CH_4 has been also investigated by applying the plasma technologies. Recently, the combination of plasmas and heterogeneous catalysis for fuel production from CH_4 reforming has attracted the increasing interest. In this research, we investigated the CO_2 reforming of CH_4 to syngas by the combination of DBD plasmas and zeolite catalyst coated with TIO_2 particles. The effects of several experimental variables such as the ratio of CH_4/CO_2 , applied voltage and frequency and total gas flow rate were investigated.