Effect of promoter and impregnation method of V₂O₅/TiO₂ catalyst on selective catalytic reduction of NO_x with NH₃

(dohkim@snu.ac.kr*)

____, , ,

Recently, N₂O, whose greenhouse effect is 310 times larger than CO₂, has been issued due to the new regulatory trend. The formation of N₂O has been observed in the selective catalytic reduction (SCR) system as a function of side reaction, especially at higher temperature than 300°C. In this study, we aimed at finding the proper promoter of V₂O₅/TiO₂ catalyst with excellent deNOx activity and minimized N₂O formation by changing the various parameters such as promoters and the order of impregnation. 5 wt% V₂O₅/TiO₂ catalyst was prepared by applying wet impregnation method using vanadium precursor with V³⁺ state. Although W promoted V₂O₅/TiO₂ catalysts showed the highest NOx conversion over all temperature range, the formation of N₂O during SCR reaction exceeded reference catalyst (V₂O₅/TiO₂) especially above 350°C. However, Mn and Zr promoted V₂O₅/TiO₂ catalysts demonstrated least N₂O formation as well as excellent NOx conversion above 350°C. In addition, impregnating vanadium first then promoter later showed the least production of N₂O during SCR reaction.