Atomistic observation of the lithiation and delithiation behaviors of silicon nanowires using reactive molecular dynamics simulations

<u>Sang Soo Han</u>^{1,*}, Hyun Jung^{1,2}, Minho Lee¹, Byung Chul Yeo¹, Kwang Ryeol Lee¹ ¹KIST; ²Hanyang University (sangsoo@kist.re.kr^{*})

In this talk, we will discuss the mechanisms for the lithiation and delithiation of Si NWs determined using a large-scale molecular dynamics (MD) simulation with a reactive force field (ReaxFF). The ReaxFF is developed using results from first-principles calculations for various crystals and molecules. During the lithiation process, Li atoms penetrate into the lattices of the crystalline Si (*c*-Si) NWs preferentially along the <110> or <112> direction, and then the c-Si changes into amorphous Li_xSi (a -Li_xSi) phases due to the simultaneous breaking of Si -Si bonds as a result of the tensile stresses between Si atoms. Before the complete amorphization of the Si NWs, we observe the formation of silicene -like structures in the NWs that are eventually broken into low -coordinated components, such as dumbbells and isolated atoms. Additionally, during delithiation of Li_xSi NWs, we observe the formation of a small amount of c -Si nuclei in the a -Li_xSi matrix below a composition of $Li_{1.4}Si \sim Li_{1.5}Si$, and we demonstrate that the two phase structure can be thermodynamically more favorable than the single-phase a -Li_xSi.