Deactivation of CuSSZ13 for NH₃/SCR reaction by CO₂

민경명, 김영진, 이준규, 홍석봉, 조병권, 남인식*
POSTECH
(isnam@postech.ac.kr*)

The CuSSZ13 has been recently regarded as a commercial urea/SCR (NH₃/SCR) catalyst due to its excellent deNOx activity and hydrothermal stability. However, there has been no systematic study for the effect of CO₂ on the catalytic activity of CuSSZ13, although CO₂ is always present in the exhaust gas stream. In the present study, we investigated the CO₂-induced deactivation of CuSSZ13. The low-temperature deNOx activity of CuSSZ13 gradually decreases upon the inclusion of CO₂ into feed gas stream. Since CO₂ can be readily coordinated to the basic site due to its large quadruple moment, CO₂ and NO competitively adsorb onto the Cu²⁺ ion in CuSSZ13, while the adsorption of NH₃ on the acidic sites of SSZ13 is mostly independent of basic Cu²⁺ sites, as determined by NO-and NH₃-TPD with CO₂. Based on the surface IR study, the formation of nitrate on Cu²⁺ ion known as one of the key steps in the NH₃/SCR reaction is suppressed by the unidentate carbonate, which is believed to be the primary cause for the decline of the deNOx activity over CuSSZ13 by CO₂.