# UNIFAC과 UNIQUAC 식에 의한 인화점 계산의 비교

이성진 세명대학교 임상병리학과 (pappi68@hanmail.net)

## Comparison of Flash Point Values Calculated by UNIFAC and UNIQUAC Equations

Sungjin Lee
Department of Clinical Laboratory Science, Semyung University
(pappi68@hanmail.net)

### 1. 서 론

가연성 액체 용액의 표면 위에 인화에 필요한 량의 증기가 있을 때, 그 액체 용액의 가장 낮은 온도를 인화점이라 한다[1].

인화점은 2가지 종류로 구분할 수 있다. 하나는 하부인화점, 다른 하나는 상부인화점이다. 일반적으로 인화점이라 하면, 하부인화점을 지칭한다.[2].

인화점은 액체 혼합물의 화재와 폭발의 가능성을 판단하는 데 중요한 성질 중 하나이다. 따라서 액체 혼합물의 안전한 사용, 저장과 운송 시설의 안전을 확보하기 위해서는 인화점 정보가 반드시 필요하다[3].

인화점 측정은 많은 시간과 비용이 발생한다. 따라서 많은 연구자들은 인화점을 효과적으로 계산하는 방법에 대해 고찰해 왔다.

본 연구에서는 이성분계 액체 혼합물인 n-butanol+propionic acid 계의 인화점을 계산하는 방법을 제시한다. n-Butanol+propionic acid 계의 인화점 실험값은 기존에 발표된 문헌 자료[4]를 그대로 활용하였으며, UNIFAC과 UNIQUAC 모델[5]을 이용하여 활동도 계수를 계산하여 인화점을 예측하였다. 또한 측정값에 대해 두 모델의 모사 능력을 비교해 보았다.

#### 2. 본 론

다음 식의 르샤틀리에 법칙[6]은 이성분계 혼합물이 기-액 상평형 상태라고 가정했을 때 적용할 수 있다.

여기서 i 는 순수성분 i 이며, y 는 기체상의 몰분율이며, LFL는 하부인화한계이다. 가연성 혼합물의 기상을 이상기체로 가정하고 액상을 비압축성 유체로 가정할 수 있다면, 기-액 상평형 상태는 아래와 같은 수정된 라울의 법칙으로 표현할 수 있다.

여기서 P는 기-액 상평형 상태에서의 전체 혼합물의 압력이며, x는 액체상의 몰분율이며, x는 활동도계수이다.

하부인화한계인 LFL은 다음과 같다.

여기서 <sup>정값절</sup> 는 인화점에서의 i성분의 포화증기압이다.

식 (2)와 식 (3)을 식 (1)에 넣고 정리하면 아래와 같다.

식 (4)에서 i 성분의 포화증기압(  $g^{\chi \chi a}$ )과 i 성분의 인화점에서의 포화증기압(  $g^{\chi \chi a}_{\gamma g}$ )은 다음과 같은 Antoine 식[5]을 이용하여 계산하였다.

$$l \circ g \stackrel{Q \circ Z}{ \mathcal{J}} \stackrel{\mathcal{J}}{ \mathcal{J}} \stackrel{\mathcal{J}}{ \mathcal{J}} \stackrel{\mathcal{J}}{ \mathcal{J}} \stackrel{\mathcal{J}}{ \mathcal{J}}$$
 (5)

여기서 A, B 및 C는 Antoine 상수이며 문헌 자료[7]에서 얻었으며, t 의 단위는 섭씨온도 ( $\mathbb{C}$ )이다.

식 (4)의 활동도 계수( y)를 계산하기 위해서 본 연구에서는 UNIFAC과 UNIQUAC 식을 사용하였다. 두 식은 다음과 같다.

#### UNIQUAC equation:

UNIFAC equation:

$$l n_{78} l n_{78} l n_{78}$$
 (7)

여기서 "l n 개"과 "l n 개"는 다음과 같다.

화학공학의 이론과 응용 제21권 제2호 2015년

식 (4)를 만족하는 온도를 계산하였고, 이 온도를 하부인화점으로 결정하였다.

#### 3. 결 론

기존에 발표된 n-butanol+propionic acid 계의 인화점 실험값[4]과, UNIFAC과 UNIQUAC 식에 의해 계산된 인화점을 비교하였다. 그 결과를 다음의 Table 1 과 Fig. 1 에 제시하였다.

UNIFAC 모델에 의한 계산값과 실험값의 평균 차이인 AAE(Absolute average error)는 1.1 3℃ 였다. 한편 UNIQUAC 모델에 의해 계산값과 실험값의 AAE는 0.69℃ 이었다. 두 식 모두 측정값을 비교적 잘 모사함을 확인 할 수 있었다. 다만 UNIQUAC 식에 비해 UNIFAC 식에 의한 방법은 활동도계수 식의 이성분계 파라미터의 문헌 자료가 없는 경우에도 인화점을 예측할 수 있다는 장점이 있다.

Table. 1. The experimental data(from Ha et al[4]) and the calculated values for the system, n-butanol( $x_1$ )+propionic acid( $x_2$ )

| Mole fractions        |       | Flash points (°C) |        |         |
|-----------------------|-------|-------------------|--------|---------|
| <b>X</b> <sub>1</sub> | X2    | Exp.              | UNIFAC | UNIQUAC |
| 1.000                 | 0.000 | 42.5              | -      | -       |
| 0.916                 | 0.084 | 42.5              | 43.31  | 43.57   |
| 0.824                 | 0.176 | 45.0              | 44.26  | 44.88   |
| 0.714                 | 0.286 | 47.0              | 45.51  | 46.60   |
| 0.507                 | 0.493 | 50.0              | 48.29  | 50.14   |
| 0.306                 | 0.694 | 53.0              | 51.76  | 53.75   |
| 0.081                 | 0.919 | 56.0              | 56.84  | 57.68   |
| 0.000                 | 1.000 | 59.0              | -      | -       |
| AAE                   | -     | -                 | 1.13   | 0.69    |

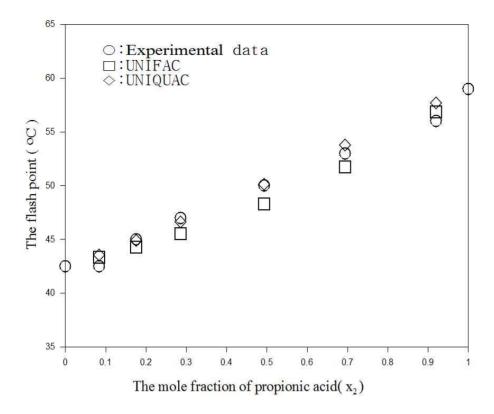



Fig. 1. The experimental data(from Ha and Lee[4]) and the calculated values for the system, n-butanol( $x_1$ )+propionic acid( $x_2$ )

## 참 고 문 헌

- [1] T. Khalili and A. Z. Moghaddam, "Measurement and Caluation of Flash Point of Binary Aqueous-Organic and Organic-Organic Solutions", Fluid Phsae Equilibria, 312, 101-105 (2006).
- [2] E. Meyer, "Chemistry of Hazardous Material", 2nd ed., Prentice-Hall, (1990)
- [3] D.A. Crowl and J.F. Louver, "Chemical Process Safety Fundamentals with Applications", Prentice-Hall (1990).
- [4] D.M. Ha, S.J. Lee and Y.H. Song, "Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures Using Tag Open-Cup Tester", Korean Chem. Eng. Res., 43(1), 181-185, (2005)
- [5] Reid, C.R., Prausnitz, J.M. and Poling, B.E., "The Properties of Gases and Liquids", 4th Edition., McGraw-Hill, New York, 102, (1998)
- [6] Le Chatelier, "Esimation of Firedamp by Flammability limits", Ann. Minmes, 19, 388-392
- [7] J. Gmehing, U. Onken and W. Arlt, "Vapor-Liquid Equilibrium Data Collection", Vol. 1, Part1-Part7, DECHEMA, (1980)