Mechanically Durable High Efficiency Perovskite Solar Cells

<u>Min Jae Ko</u>^{1,†}, Inyoung Jeong^{1,2}, Hae Jin Kim^{1,3}, Dae–Eun Kim³, Jin Woo Lee² ¹Photo–Electronic Hybrids Research Center, KIST; ²Department of Chemical Engineering, POSTECH; ³School of Mechanical Engineering, Yonsei University (miko@kist.re.kr[†])

Organic-inorganic lead halide perovskites (CH3NH3PbX3, X: I-, Br-, Cl-) being spotlighted as powerful light harvesters have realized certified efficiency as high as 20.1% within very few years since first report of 3.8% in 2009, opening new era for photovoltaic fields. The excellent properties as absorbers and inexpensive solution establish perovskite solar cells promising processing as candidates for commercialization of photovoltaic. However, most of state-of-the-art perovskite solar cells need expensive noble metal (Au and Ag) as metal back contacts, still raising the cost of perovskite solar cells. Therefore, replacement of noble metals with low-cost and earth abundant materials is highly desirable and that is one of the important topics for perovskite solar cell fields. In this work, for the first time, we develop a noble-metal free mesoscopic perovskite solar cell based on low-cost Mo cathode.