High efficient photoconversion of CO_2 on amine functionalized graphene with high activation of CO_2

<u>조경민</u>, 김경환, 정현주, 정희태[†] KAIST (heetae@kaist.ac.kr[†])

The human have been faced the two severe crisis of global warming and shortage of fossil fuel due to dramtic increase in comsumed energy. So, the photoreduction of CO_2 to valuable chemical fuel has been made attraction to consume the CO_2 and produce the sustainable and clean energ by only using sun light and water. To increase the efficiency of photocatalyst, the graphene has been utilized with various semiconductor composites to enhance the ability for efficient electron separation. However, the reported graphene based photocatalyst exhibit the low photoefficiency of CO_2 conversion. In this research, we design the CO_2 conversion system with high adsorption and activation of CO_2 to increase the reaction sites and affinity for CO_2 . Thus, we make the semiconductor wrapped by amine functionalized graphene followed by substitution for amine group on graphene surfaces which is the common CO_2 affinities and high affinity of CO_2 . This photocatalyst system shows the improved CO_2 affinities and high conversion rate for CO_2 without any noble metals.