Improved Cycling Performance and Surface Chemistry Studies of 4.8 V Li–rich Layered Oxide Cathode Using Fluorinated Linear Carbonate as a High–Voltage Additive

<u>HIEU QUANG PHAM</u>, Eui-Hyung Hwang¹, Young-Gil Kwon¹, Hyun Min Jung², 송승완[†] Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University; ¹Leechem Co., Ltd.; ²Department of Applied Chemistry, Kumoh National Institute of Technology

(swsong@cnu.ac.kr[†])

Li-rich layered oxide of $xLi_2MnO_3.(1-x)Li(Mn,Ni,Co)O_2$ is one of the most promising cathode materials for high-energy density Li-ion batteries due to their high discharge capacities of $\geq 250 \text{ mAhg}^{-1}$ on the operation above 4.6 V vs. Li/Li+. Its cycling performance, however, has been limited at high-voltage operation (> 4.3 V), due to anodic instability of conventional electrolyte and interfacial instability of the cathode. Here we report significantly improved cycling performance of 4.8 V half-cell and full-cell with $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ cathode and fluorinated linear carbonate as a novel high-voltage electrolyte additive. Interfacial reaction (SEI formation) mechanism, the SEI composition and stability, and their relations to high-voltage cycling performance would be discussed.