Morphology dependent ethanol dehydration on y-Al₂O₃

<u>이재경</u>, 전힘찬, 오동건, 곽자훈[†] 울산과학기술대학교 (jhkwak@unist.ac.kr[†])

We synthesized aluminas with different facet ratio (platelet and rod-shape) and evaluated facet-dependent activity over ethanol dehydration. Platelet- and rod-shaped alumina were characterized by XRD, BET, TEM and ethanol temperature programmed desorption (TPD). Platelet and rod γ -Al₂O₃ showed identical surface characteristics with commercial

and similar activities over ethanol dehydration. After 1100°C calcination, commercial γ -Al₂O₃ transformed into α -Al₂O₃. However, platelet transformed into Θ -phase while the rod into the δ -phase after same treatments. Interestingly, Ethanol TPD showed significantly different desorption profiles which suggest different surface characteristic despite similar BET surface area. Their maximum desorption rate showed rod > platelet > commercial order and their ethanol dehydration activity also showed the same trend. All results suggest morphology-dependent phase transformation which led to different activity over ethanol dehydration.