Direct dimethyl ether(DME) synthesis from syngas using ordered mesoporous alumina: Effect of calcination temperature of supports

<u>함형원</u>, 배종욱[†] 성균관대학교 (finejw@skku.edu[†])

Dimethyl ether (DME), which has similar physical properties with LPG, is one of the attractive alternative fuels because of a lower emission of air-pollutants than that of the traditional diesel fuel. The direct synthesis of DME from syngas was investigated on the Cu supported on the mesoporous Al_2O_3 (Cu/mesoAl) to verify the regular mesopores to the catalytic stability. The mesoporous Al_2O_3 was synthesized by the EISA (Evaporation Induced Self Assembly) and it was annealed at different temperatures for changing its physicochemical properties and acidic properties. The copper was loaded 10wt% based on the total weight of Al_2O_3 by incipient wetness impregnation method. The SAXS analysis indicated that the annealing temperature of mesoporous Al_2O_3 was critical factor to change ordered regularity of alumina and the selectivity to DME was inversely related with the pore sizes of Al_2O_3 . H_2 -TPR, XRD, NH_3 -TPD, N_2 -physisorption, N_2O titration, and XPS were used to characterize the hybrid Cu/mesoAl catalysts.