Destruction of CHF3 in an Atmospheric Plasma System

<u>Nguyen Duc Ba</u>, 이원규^{1,†} 강원대학교; ¹Department of Chemical Engineering, Kangwon National University (wglee@kangwon.ac.kr[†])

Destruction of CHF₃ investigated in a dielectric barrier discharge reactor immersed in an electrically insulating oil bath. The feed gases were a mixed of CHF₃, O_2 and N_2 , with an O_2/N_2 volume ratio of 21/79. We examined the effect of applied voltage, applied frequency and initial CHF₃ concentration in feed on the reaction. The conversion of CHF₃ improved with increased applied voltage and frequency, and the decreased initial CHF₃ concentration in feed. Moreover, an increased in the initial CHF₃ in feed from 5% to 15% did not change significantly the conversion of CHF₃, or the selectivity of CO and CO₂. Approximately 98.98% of CHF₃ in feed was destructed under an applied voltage of 7 kV, an applied frequency of 30 kHz and an initial CHF₃ concentration of 5%. However, the optical emission of (CHF₃, O_2 and N_2) plasma showed that the products included nitric oxide compounds.