Enclathration of NF_3 and $c-C_4F_8$ molecules in gas hydrates and their thermodynamic and cage filling characteristics

<u>김은애</u>, 서용원[†] UNIST (ywseo@unist.ac.kr[†])

F-gases are man-made gases which are utilized in semiconductor industry and refrigeration systems. Since F-gases have a high potential of global warming effect, various methods to separate F-gases have been widely studied, including gas hydrate-based F-gas separation. However, gas hydrate formation of $c-C_4F_8$ and NF₃ has not been well-studied, even though they have high global warming potential ($c-C_4F_8$: 8,700, NF₃: 8,000) and long atmospheric lifetime ($c-C_4F_8$: 3,200 years, NF₃: 740 years). Therefore, in this study, the fundamental research focusing on the thermodynamic and spectroscopic characteristics of NF₃ and $c-C_4F_8$ gas hydrates was performed. The three-phase (H – L_W – V) equilibria of the pure NF₃ and mixed $c-C_4F_8 + CH_4$ hydrates were measured, and the crystal structures of NF₃ and $c-C_4F_8 + CH_4$ hydrates were identified through PXRD, while the cage-filling characteristics of NF₃ and $c-C_4F_8$ molecules in each hydrate were analyzed through ¹³C & ¹⁹F NMR, and in-situ Raman spectroscopy. The results obtained in this study are expected to be helpful in future studies about various F-gas hydrates.