One-pot synthesis of Iron Oxide Nanobox Deposited on Hierarchically Porous Graphene Architecture for Lithium Ion Storage

> <u>윤 솔</u>, 박호석[†] 성균관대학교 (phs0727@skku.edu[†])

The hierarchical architecturing and hybridization of iron oxide is important for achieving multifunctional capability that makes it possible for practical applications. In particular, hierarchical architecturing of graphene/iron oxide hybrids in a three-dimensionally (3D) manner is expected to become an innovative chemical approach for full potential of respective functionality. In this study, hierarchically structured rGO/ α -Fe₂O₃ nanobox hybrids (hrGO/ α -Fe NBhs) are synthesized via a one-pot, hydrothermal self-assembly process. All in one synthetic approach is simple yet useful for simultaneously constructing 3D macroscopic rGO structures and growing α -Fe₂O₃ NBs. The discrete α - Fe₂O₃ NBs are uniformly distributed on the surface of the hrGO/ α -Fe and confined in the 3D architecture, thereby inhibiting the restacking of rGO layers and maximizing their functionalities. In order to demonstrate the superiority of the hrGO/ α -Fe NBhs, we applied them into lithium ion battery anodes.