Structure Identification and Dissociation Enthalpy Measurement of the CH₄ + C₃H₈ Hydrate Replaced by CO₂

이요한, 최원중, 서용원[†] 울산과학기술원 (ywseo@unist.ac.kr[†])

The CH₄-CO₂ replacement occurring in natural gas hydrates has attracted significant attention due to its double function for CH₄ recovery and CO₂ sequestration. This study examined the influence of the CH₄-CO₂ replacement occurring in the CH₄ (90%) + C₃H₈ (10%) hydrate on the hydrate structure and dissociation enthalpy (ΔH_d). The crystalline structure of gas hydrates before and after replacement using CO₂ was investigated using powder X-ray diffractometer (PXRD). In addition, ¹³C NMR was adopted in order to identify the cage-dependent guest molecule distribution in the gas hydrates before and after replacement with CO₂. The composition of the hydrate phase was measured using a gas chromatograph. A gradual increase in the extent of the replacement was observed as the driving force (ΔP_{CO2}) increased. A high-pressure micro-differential scanning calorimeter (HP μ -DSC) revealed that the ΔH_d values of the hydrates after replacement with CO₂ were decreased with large variation depending on ΔP_{CO2} , comparing with those of initial CH₄ + C₃H₈ hydrates.