Coverage-dependent adsorption behavior of MEA on TiO₂(110) and its effect on work function

<u>김수환</u>, 손소담, 신형준, 곽상규[†] 울산과학기술원 (skkwak@unist.ac.kr[†])

The adsorption of monoethanolamine (MEA) on rutile $TiO_2(110)$ surface is important for the application on photo-electric devices through the reduction of the work function of $TiO_2(110)$. Thus, we studied coverage-dependent adsorption behavior of MEA on defective and pristine $TiO_2(110)$ surfaces and its effect on work function (Φ) by density functional theory (DFT) calculation. The adsorption energy (ΔE_{ads}) was calculated with various configurations of MEA molecule. The most stable adsorption was found to be the dissociative adsorption of MEA in gauche configuration at the oxygen vacancy site ($\Delta E_{ads} = -3.604$ eV). Also, the work-function drop was the most efficient with this configuration ($\Delta \Phi = -1.132$ eV). In case of the pristine $TiO_2(110)$ surface, MEA adsorbed on Ti_{5f} rows with gauche or dissociative gauche configuration showed relatively high adsorption energies. Therefore, after oxygen vacancies were fully occupied by MEA, Ti_{5f} rows will be occupied by gauche or dissociative gauche configurations of MEA. It was found that the work function of pristine $TiO_2(110)$ surface gradually decreased with increasing coverage of MEA for both gauche and dissociative gauche forms.