Hydrothermal Synthesis of Li₂TiO₃ Powders

<u>이서희</u>, 이수경, 이창용[†] 공주대학교 (cylee@konju.ac.kr[†])

In recent years there has been an increased interest in monitoring and controlling such constituents of engine exhaust as O_2 , CO, CO_2 , NO_x , and hydrocarbons. Li₂TiO₃ is used as cathode material in carbon dioxide sensor, anode material in lithium ion batteries and tritium breeder materials in the blanket of fusion reactors. Carbon dioxide sensors are becoming increasingly important for many applications, such as monitoring air quality and controlling combustion. The CO_2 detection approach uses an electrochemical cell with lithium (Li)-based electrolyte whose voltage output depends on the CO_2 concentration in the environment. A solid potentiometric CO_2 gas sensor has been developed using Li₃PO₄ as the electrolyte, Li₂TiO₃/TiO₂ as the reference electrode, and Li₂CO₃ as the sensing electrode. The basic sensig mechanism is to measure the equilibrium potential difference between sensing and reference electrodes. Li₂TiO₃/TiO₂ enables this senser to avoid oxygen interference. In this study, Li₂TiO₃ powders were prepared by the hydrothermal method with TiO₂ and LiOH. The phase presence and surface morphology were characterized by XRD and SEM techniques, respectively.