Carbon Dioxide-Based Drug Synthesis from Flue Gas with Silicon-Nanowire-Embedded Micro-Total Capture System (µ-TCS)

<u>고동현</u>, 김동표[†] POSTECH (dpkim@postech.ac.kr[†])

As a result of human activity, many extra carbon dioxide (CO₂) is added without removing, which destroys the balance to add and remove CO₂ by the natural cycle. Moreover, many studies have reported that more CO₂ emissions resulted in higher CO₂ concentration which has correlation with global warming. In this circumstance, there is an increasing need to remove CO₂ efficiently from CO₂ containing exhaust gas, such as flue gas. Herein, we report a silicon-nanowire-embedded micro-total capture system (μ -TCS) based on excellent liquid repellency of superamphiphobic silicon nanowires. In the μ -TCS based on gas-liquid flows, CO₂ is selectively captured from flue gas by an absorbent, is desorbed from the absorbent, and is ultimately utilized to synthesis drug compounds, by all-connected in-situ manner. μ -TCS is expected to provide the best possible efficiency of CO₂ capture and utilization known to date.