2350

Catalytic Ionic Hydrogenation by Intra-zeolite Frustrated Lewis Pairs

<u>최용남</u>[†], 이희주¹, 임대운², 조인화³, 서봉임⁴, 김지한⁴ KAERI; ¹서강대학교 물리학과; ²일본 교토대학교 화학과; ³KAERI 중성자과학연구부; ⁴KAIST 생명화학공학과 (dragon@kaeri.re.kr[†])

Ionic hydrogenation (IH) is an addition of proton and hydride to unsaturated substrates. Typical materials containing both proton and hydride source are transition metal dihydride complexes¹⁾. Frustrated Lewis pair (FLP) is a set of Lewis acid and base within the materials. Most of FLP compounds reported to date are zwitter-ionic organic molecules such as $(C_6F_5)_2BH-HPR_2(R=Mes \text{ or } tBu)^{2)}$. These are homogeneous catalysts which require separation step after the reaction.

Recently we have reported a formation of intra-zeolite FLP catalysts having hydridic sites as well as protic sites³⁾. Catalytic ionic hydrogenation of unsaturated organic compounds possessing C=O, C=N and C=C have been demonstrated. Especially, the reaction coordinate of aceton hydrogenation deduced from in situ experiments has been confirmed by a DFT calculation. Detailed results and discussion will be presented.

1) R. M. Bullock, *Chem. Eur. J.*, 2004, 10, 2366–2374.

2) D. W. Stephan and G. Erker, Angew. Chem. Int. Ed., 2015, 54, 2-44.

3) H. Lee and Y. N. Choi et al. Angew. Chem. Int. Ed., 2015, 54, 13080-13084.