Study of deactivation mechanism over SiO₂ supported Ni catalysts for direct internal reforming in molten carbonate fuel cell

<u>김학민</u>, 장원준, 심재오, 전경원, 나현석, 이열림, 이다위, 노현석[†] 연세대학교 (hsroh@yonsei.ac.kr[†])

A direct internal reforming (DIR) reaction for a molten carbonate fuel cell (MCFC) was carried out using SiO₂ supported catalysts, which are known to be a highly stable. The SiO₂ supported Ni catalysts rapidly deactivated in DIR-MCFC. To elucidate the mechanism of the catalyst deactivation, various characteristic analyses (BET, H₂-chemisorption, FT-IR, and SEM) of fresh and used catalysts were employed. It was found that the SiO₂ species changed to Si(OH)₄ in the presence of both H₂O and K. This transformation caused a significant decrease in Ni dispersion and BET surface area resulting in the deactivation of the catalyst.