CO₂ Capture on Primary Amine Groups Coated AC at Room Temperature

<u>이상문</u>, 이영철¹, 이현욱, 홍원기, 이진배[†], 김해진 한국기초과학지원연구원; ¹가천대학교 (iblee@kbsi.re.kr[†])

For purposes of selective CO_2 uptake under ambient conditions, a few number of primary amine groups are selected, including aminoclay(H_2N -CL), 3-aminopropyltriethoxysilane (APTES), and dopamine hydrochloride(DA). Coatings of both H_2N -CL into activated carbon (AC) show enhanced CO_2 adsorption capacity at 273 and 298K and 1 atm, resulting in 3.069/1.950mmol/g, compared to 2.872/1.824mmol/g of pristine AC. However, APTES and DA coated AC at 273 and 298K and 1 atm are reduced to 2.433/1.762 and 0.429/0.389 mmol/g. Particularly, the coating of H_2N -CL nanoparticles into AC exhibits enhanced selectivity of 8.8/18.7, compared to 7.6/15.9 in pristine AC for CO_2/N_2 at 273 and 298K at 1 atm.