Synthesis of High-Silica LTA and UFI Zeolites and NH₃-SCR Performance of Their Copper-Exchanged Form

> <u>류태경</u>, 조동희, 박기태, 김평순¹, 김창환¹, 남인식, 홍석봉[†] 포항공과대학교; ¹현대자동차 (sbhong@postech.ac.kr[†])

A series of LTA zeolites with Si/Al = $8.3-\infty$ and a UFI zeolite with Si/Al = 11 are synthesized using benzylimidazolium-based cations as organic structure-directing agents in fluoride media, if required, together with the tetramethylammonium ion. Among the LTA zeolites synthesized in the present study, two Cu-exchanged LTA catalysts containing similar amount of Cu contents (~ 3 wt %) with Si/Al = 11 and 16 showed enhanced operating temperature window with excellent hydrothermal stability for selective catalytic reduction of NOx with NH $_3$ compared to Cu-SSZ-13 commercially being used for automotive applications.