Gaseous CF_4 removal using electrochemically generated homogeneous $Cu[Ni(CN)_4]^{3-}$ by electro-scrubbing

A.G.Ramu, G. Muthuraman, 문일식[†] 순천대학교 (ismoon@sunchon.ac.kr[†])

Growing semiconducting industries leaves similar amount of CF_4 to the environment that are dangerous to the healthy environment and humans. Among few ways to remove CF_4 , electrochemical way of its removal become simple and futuristic technology. Metal complexes are more suitable to use as a mediator in the MER process due to stabilize the active low valent state of metal ion. The present investigation focuses on removal of gaseous CF_4 using electrogenerated $Cu(I)[Ni(II)(CN)_4]^{2^-}$ in KOH medium. At a first step, electrochemical reduction of $Cu(II)[Ni(CN)_4]^{2^-}$ was optimized at different electrodes like TiO_2 , Ag, carbon. Electrolytic reduction of $Ni(II)(CN)_4^{2^-}$ identified by ORP variation and potentiametric titration. The reduction efficiencies changes calculated using titration with $KMnO_4$. Cyclic voltammetry analysis at said electrodes correlated with the reduction of $Ni(II)(CN)_4^{2^-}$. Finally, CF_4 removal was carried out under optimized conditions using electroscrubbing with online FTIR gas analyzer and removal efficiency found 99%.