$\label{lem:combustion} \mbox{Important Design Factors of Amine-Based Solid Adsorbents for Post-Combustion } \mbox{CO}_2$ $\mbox{Capture}$

<u>최우성</u>, 최민기[†] KAIST (mkchoi@kaist.ac.kr[†])

Substantial efforts have been made to increase the $\rm CO_2$ working capacity of amine adsorbents for efficient $\rm CO_2$ capture. However, the ultimate metric for assessing adsorbents is not the $\rm CO_2$ capacity but the regeneration heat required for capturing a fixed amount of $\rm CO_2$. In this work, we synthesized PEI/SiO2 adsorbents functionalized with various epoxides. This provided adsorbents with different amine structures showing various $\rm CO_2/H_2O$ adsorption properties. Our studies revealed that, contrary to what we would normally expect, the $\rm CO_2$ working capacity was not a decisive factor in determining the regeneration heat required for $\rm CO_2$ capture. This is because the benefit of large $\rm CO_2$ working capacity was cancelled out by the difficulty of $\rm CO_2$ desorption. Instead, the suppression of $\rm H_2O$ co-adsorption was critical for reducing regeneration heat, because substantial latent heat is required for $\rm H_2O$ desorption. Consequently, the PEI/SiO₂ functionalized with 1,2-epoxybutane required much lower regeneration heat (2.66 GJ $\rm tCO_2^{-1}$) than the conventional PEI/SiO₂ (4.03 GJ $\rm tCO_2^{-1}$), because of suppressed $\rm H_2O$ co-adsorption as well as moderately high $\rm CO_2$ working capacity.