Orientation Effect of DDR Zeolite Membrane for the Separation of CO₂ and H₂ <u>이정현</u>^{1,2}, 김진철¹, 김형준¹, 김은주³, 최정규³, 곽상규^{1,†} ¹울산과학기술원; ²에너지 및 화학공학부; ³고려대학교 (skkwak@unist.ac.kr[†]) Zeolite is one of the most popular adsorbent due to its uniform pore structure as well as superior thermal, mechanical and chemical stabilities. In the separation of CO_2 and H_2 via membrane-based technology, since the kinetic diameter of H_2 is quite smaller than that of CO_2 , the adsorbent is required to have distinctive pore size and adsorptive property. DDR zeolite having 6 and 8-membered ring windows in different orientations could be employed for the separation of these gas molecules. In this study, the orientation effect of DDR zeolite membrane on CO_2 separation was investigated via molecular dynamics (MD) simulation and density functional theory (DFT) calculation. We considered two slab models, perpendicular to (001) and (101) surfaces, where adsorbed gas molecules pass through 6- and 8-membered ring windows. In the (001) slab model, both CO_2 and H_2 molecules undergo high-energy barrier, thereby impeded permeabilities. In contrast, in the (101) slab model, CO_2 was facilitatively diffused with good permeance, resulting in high H_2/CO_2 separation performance. Through this study, the effectiveness of the oriented zeolite membrane in CO_2 separation was shown.